Dependence of amide vibrations on hydrogen bonding.
نویسندگان
چکیده
The effect of hydrogen bonding on the amide group vibrational spectra has traditionally been rationalized by invoking a resonance model where hydrogen bonding impacts the amide functional group by stabilizing its [(-)O-C=NH (+)] structure over the [O=C-NH] structure. However, Triggs and Valentini's UV-Raman study of solvation and hydrogen bonding effects on epsilon-caprolactum, N, N-dimethylacetamide (DMA), and N-methylacetamide (NMA) ( Triggs, N. E.; Valentini, J. J. J. Phys. Chem. 1992, 96, 6922-6931) casts doubt on the validity of this model by demonstrating that, contrary to the resonance model prediction, carbonyl hydrogen bonding does not impact the AmII' frequency of DMA. In this study, we utilize density functional theory (DFT) calculations to examine the impact of hydrogen bonding on the C=O and N-H functional groups of NMA, which is typically used as a simple model of the peptide bond. Our calculations indicate that, as expected, the hydrogen bonding frequency dependence of the AmI vibration predominantly derives from the C=O group, whereas the hydrogen bonding frequency dependence of the AmII vibration primarily derives from N-H hydrogen bonding. In contrast, the hydrogen bonding dependence of the conformation-sensitive AmIII band derives equally from both C=O and N-H groups and thus, is equally responsive to hydrogen bonding at the C=O or N-H site. Our work shows that a clear understanding of the normal mode composition of the amide vibrations is crucial for an accurate interpretation of the hydrogen bonding dependence of amide vibrational frequencies.
منابع مشابه
UV resonance Raman investigation of the aqueous solvation dependence of primary amide vibrations.
We investigated the normal mode composition and the aqueous solvation dependence of the primary amide vibrations of propanamide. Infrared, normal Raman, and UV resonance Raman (UVRR) spectroscopy were applied in conjunction with density functional theory (DFT) to assign the vibrations of crystalline propanamide. We examined the aqueous solvation dependence of the primary amide UVRR bands by mea...
متن کاملDirect UV Raman Monitoring of 310-Helix and π-Bulge Premelting during r-Helix Unfolding
We used UV resonance Raman (UVRR) spectroscopy exciting at ∼200 nm within the peptide bond π f π* transitions to selectively study the amide vibrations of peptide bonds during R-helix melting. The dependence of the amide frequencies on theirΨ Ramachandran angles and hydrogen bonding enables us, for the first time, to experimentally determine the temperature dependence of the peptide bond Ψ Rama...
متن کاملHydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts.
The dependence of amide proton chemical shifts on temperature is used as an indication of the hydrogen bonding properties in a protein. The amide proton temperature coefficients of the beta-helical antifreeze protein from Tenebrio molitor are examined to determine their hydrogen bonding state in solution. The temperature-dependent chemical shift behavior of the amides in T. molitor antifreeze p...
متن کاملEvidence for the presence of hydrogen-bonded secondary structure in angiotensin II in aqueous solution.
Automated tritium-hydrogen exchange measurements have been made on the linear octapeptide Val(5)-angiotensin II amide. All six amide hydrogens of the peptide backbone are observable, and are resolved into three classes according to their exchange rates. The rate of exchange of the slowest class, t(1/2) of 300 min at 0 degrees C (pH 2.5), is compared with that of hydrogens that exchange abnormal...
متن کاملTemperature dependence of 1H chemical shifts in proteins.
Temperature coefficients have been measured by 2D NMR methods for the amide and C alpha H proton chemical shifts in two globular proteins, bovine pancreatic trypsin inhibitor and hen egg-white lysozyme. The temperature-dependent changes in chemical shift are generally linear up to about 15 degrees below the global denaturation temperature, and the derived coefficients span a range of roughly -1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 38 شماره
صفحات -
تاریخ انتشار 2008